Self-testing is a method to certify quantum states and measurements in a device-independent way. The device-independent certification of quantum properties is purely based on input-output measurement statistics of the involved devices with minimal knowledge about their internal workings. Bipartite pure entangled states can be self-tested, but, in the case of multipartite pure entangled states, the answer is not so straightforward. Nevertheless, \v{S}upi\'{c} et al. recently introduced a novel self-testing method for any pure entangled quantum state, which leverages network assistance and relies on bipartite entangled measurements. Hence, their scheme loses the true device-independent flavor of self-testing. In this regard, we provide a self-testing scheme for genuine multipartite pure entangle states in the true sense by employing a generalized Hardy-type non-local argument. Our scheme involves only local operations and classical communications and does not depend on bipartite entangled measurements and is free from any network assistance. In addition, we provide the device-independent bound of the maximum probability of success for generalized Hardy-type nonlocality argument.
翻译:暂无翻译