Multi-access edge computing (MEC) emerges as an essential part of the upcoming Fifth Generation (5G) and future beyond-5G mobile communication systems. It adds computational power towards the edge of cellular networks, much closer to energy-constrained user devices, and therewith allows the users to offload tasks to the edge computing nodes for low-latency applications with very-limited battery consumption. However, due to the high dynamics of user demand and server load, task congestion may occur at the edge nodes resulting in long queuing delay. Such delays can significantly degrade the quality of experience (QoE) of some latency-sensitive applications, raise the risk of service outage, and cannot be efficiently resolved by conventional queue management solutions. In this article, we study a latency-outage critical scenario, where users intend to limit the risk of latency outage. We propose an impatience-based queuing strategy for such users to intelligently choose between MEC offloading and local computation, allowing them to rationally renege from the task queue. The proposed approach is demonstrated by numerical simulations to be efficient for generic service model, when a perfect queue status information is available. For the practical case where the users obtain only imperfect queue status information, we design an optimal online learning strategy to enable its application in Poisson service scenarios.
翻译:多接入边缘计算(MEC)是即将到来的第五代(5G)和未来5G移动通信系统的一个重要部分,它增加了蜂窝网络边缘的计算能力,更接近于能源紧缺的用户设备,从而使用户能够将任务卸到低纬度应用的边缘计算节点,而电池消耗量则非常有限。然而,由于用户需求和服务器负荷的动态性能很高,任务拥堵可能发生在边缘节点,导致长期排队延迟。这种延迟会大大降低一些对延时敏感应用的经验质量(QoE),增加服务中断的风险,并且无法通过常规的排队管理解决方案有效解决。在本篇文章中,我们研究一个延时退出临界点的关键情景,用户打算限制延时耗耗耗的风险。我们提议基于不满足性的排队列战略,让这些用户在MEC卸载和本地计算之间作出明智的选择,使他们能够理性地脱离任务排队列。我们提议的方法是通过数字模拟来证明,只有当我们获得最完善的版本服务应用时,才能有效进行在线排序。