Open set recognition (OSR) assumes unknown instances appear out of the blue at the inference time. The main challenge of OSR is that the response of models for unknowns is totally unpredictable. Furthermore, the diversity of open set makes it harder since instances have different difficulty levels. Therefore, we present a novel framework, DIfficulty-Aware Simulator (DIAS), that generates fakes with diverse difficulty levels to simulate the real world. We first investigate fakes from generative adversarial network (GAN) in the classifier's viewpoint and observe that these are not severely challenging. This leads us to define the criteria for difficulty by regarding samples generated with GANs having moderate-difficulty. To produce hard-difficulty examples, we introduce Copycat, imitating the behavior of the classifier. Furthermore, moderate- and easy-difficulty samples are also yielded by our modified GAN and Copycat, respectively. As a result, DIAS outperforms state-of-the-art methods with both metrics of AUROC and F-score. Our code is available at https://github.com/wjun0830/Difficulty-Aware-Simulator.
翻译:开放设置识别( OSR) 假设在推论时出现未知现象。 OSR的主要挑战是, 未知模型的响应是完全无法预测的。 此外, 开放数据集的多样性使得由于情况存在不同的困难程度而更加困难。 因此, 我们提出了一个新颖的框架, Difficulty- Aware 模拟器( DISTA), 它生成了具有不同难度的假冒, 以模拟真实世界。 我们首先在分类器的观点中调查基因对抗网络( GAN) 的假冒, 并观察到这些假冒并不严重具有挑战性。 这导致我们界定以具有中等难度的GAN 生成样本的难度标准。 要生成硬难度示例, 我们引入仿照分类器的行为。 此外, 我们的改良GAN 和 Coplicat 分别生成了中度和易度的样本。 结果, DASIA 超越了使用 AUROC 和 FScore 的光量度- 。 我们的代码可以在 httpsgistrual- 30/Siffarvator.