Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information. Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk. We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them effective. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
Top
微信扫码咨询专知VIP会员