A cross-domain recommendation has shown promising results in solving data-sparsity and cold-start problems. Despite such progress, existing methods focus on domain-shareable information (overlapped users or same contexts) for a knowledge transfer, and they fail to generalize well without such requirements. To deal with these problems, we suggest utilizing review texts that are general to most e-commerce systems. Our model (named SER) uses three text analysis modules, guided by a single domain discriminator for disentangled representation learning. Here, we suggest a novel optimization strategy that can enhance the quality of domain disentanglement, and also debilitates detrimental information of a source domain. Also, we extend the encoding network from a single to multiple domains, which has proven to be powerful for review-based recommender systems. Extensive experiments and ablation studies demonstrate that our method is efficient, robust, and scalable compared to the state-of-the-art single and cross-domain recommendation methods.
翻译:-
跨领域推荐在解决数据稀疏性和冷启动问题方面显示了良好的结果。尽管取得了这样的进展,但现有方法专注于领域共享信息(重叠用户或相同上下文)用于知识转移,如果没有这样的要求,他们难以良好地泛化。为了解决这些问题,我们建议利用评论文本,这些文本通常适用于大多数电子商务系统。我们的模型(名为SER)使用三个文本分析模块,由一个单一的领域鉴别器进行指导,以进行分解表示学习。在这里,我们提出了一种新的优化策略,可以增强领域分解的质量,并削弱源领域的有害信息。此外,我们将编码网络从单一域扩展到多个域,这对于基于评论的推荐系统已被证明是强大的。广泛的实验和消融研究表明,与最先进的单一和交叉领域推荐方法相比,我们的方法是高效,稳健和可扩展的。