Non-parametric tests based on permutation, rotation or sign-flipping are examples of so-called group-invariance tests. These tests rely on invariance of the null distribution under a set of transformations that has a group structure, in the algebraic sense. Such groups are often huge, which makes it computationally infeasible to use the entire group. Hence, it is standard practice to test using a randomly sampled set of transformations from the group. This random sample still needs to be substantial to obtain good power and replicability. We improve upon the standard practice by using a well-designed subgroup of transformations instead of a random sample. We show this can yield a more powerful and fully replicable test with the same number of transformations. For a normal location model and a particular design of the subgroup, we show that the power improvement is equivalent to the power difference between a Monte Carlo $Z$-test and Monte Carlo $t$-test. In our simulations, we find that we can obtain the same power as a test based on sampling with just half the number of transformations, or equivalently, more power for the same computation time. These benefits come entirely `for free', as our methodology relies on an assumption of invariance under the subgroup, which is implied by invariance under the entire group.
翻译:基于变异、旋转或标牌翻转的非参数测试是所谓的群变试验的例子。 这些测试依赖于在一组变异结构下,在代数意义上的一组变异结构下的无效分布。 这些组通常是巨大的, 使得它无法使用整个组。 因此, 使用一组随机抽样抽样的一组变异进行测试是标准做法。 这种随机抽样还需要大量才能获得良好的能量和可复制性。 我们通过使用设计良好的变异分组而不是随机抽样来改进标准做法。 我们显示, 它可以产生一个更强大和完全可复制的变异结构, 其变异数量相同。 对于一个正常的位置模型和子组的特定设计, 我们显示, 变异能力改进相当于Monte Carlo $Z- 测试和 Monte Carol $t- 测试之间的能量差异。 我们的模拟发现, 我们可以得到同样的能量, 以抽样为基础, 仅用一半的变异组合数进行测试, 或者以相同的变异变法为基础, 完全以假设的变异性分组为基础, 将这些变异法作为整个计算的基础。