Data annotation plays a crucial role in ensuring your named entity recognition (NER) projects are trained with the right information to learn from. Producing the most accurate labels is a challenge due to the complexity involved with annotation. Label inconsistency between multiple subsets of data annotation (e.g., training set and test set, or multiple training subsets) is an indicator of label mistakes. In this work, we present an empirical method to explore the relationship between label (in-)consistency and NER model performance. It can be used to validate the label consistency (or catches the inconsistency) in multiple sets of NER data annotation. In experiments, our method identified the label inconsistency of test data in SCIERC and CoNLL03 datasets (with 26.7% and 5.4% label mistakes). It validated the consistency in the corrected version of both datasets.
翻译:数据注解在确保您命名的实体识别(NER)项目得到正确信息学习方面发挥着关键作用。 生成最准确的标签是一项挑战,因为注解涉及的复杂性。 标签在数据注解的多个子集(如培训组和测试组,或多个培训子集)之间不一致是标签错误的一个指标。 在这项工作中,我们提出了一个实验方法,以探索标签(不一致性)与NER模型性能之间的关系。它可以用来验证多套NER数据注解中的标签一致性(或发现不一致)。在实验中,我们的方法确定了在SCIERRC和CONLLL03数据集中测试数据的标签不一致(有26.7%和5.4%的标签错误) 。它验证了两个数据集校正版本的一致性 。