Deep learning-based models have been very successful in achieving state-of-the-art results in many of the computer vision, speech recognition, and natural language processing tasks in the last few years. These models seem a natural fit for handling the ever-increasing scale of biometric recognition problems, from cellphone authentication to airport security systems. Deep learning-based models have increasingly been leveraged to improve the accuracy of different biometric recognition systems in recent years. In this work, we provide a comprehensive survey of more than 120 promising works on biometric recognition (including face, fingerprint, iris, palmprint, ear, voice, signature, and gait recognition), which deploy deep learning models, and show their strengths and potentials in different applications. For each biometric, we first introduce the available datasets that are widely used in the literature and their characteristics. We will then talk about several promising deep learning works developed for that biometric, and show their performance on popular public benchmarks. We will also discuss some of the main challenges while using these models for biometric recognition, and possible future directions to which research in this area is headed.


翻译:在过去几年里,深层次的学习模型在计算机视觉、语音识别和自然语言处理任务的许多方面都非常成功地取得了最先进的成果。这些模型似乎很自然地适合处理从手机认证到机场安全系统等日益扩大的生物鉴别问题。近年来,深层次的学习模型越来越多地被用来提高不同生物鉴别识别系统的准确性。在这项工作中,我们对120多项有希望的生物鉴别工作(包括面部、指纹、iris、棕榈笔、耳朵、声音、签名和步调识别)进行了全面调查,这些生物鉴别工作采用了深层次的学习模型,并展示了它们在不同应用中的力量和潜力。我们首先介绍了文献及其特征中广泛使用的现有的数据集。然后我们将讨论为生物鉴别工作开发的几部很有希望的深层次学习作品,并展示它们在公众基准方面的表现。我们还将讨论一些主要挑战,同时利用这些模型进行生物鉴别识别,以及该领域研究可能面向的未来方向。

0
下载
关闭预览

相关内容

生物特征识别(BIOMETRICS) 技术,是指通过计算机利用人体所固有的生理特征(指纹、虹膜、面相、DNA等)或行为特征(步态、击键习惯等)来进行个人身份鉴定的技术。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
深度学习(Deep Learning)发展史
Linux中国
7+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
24+阅读 · 2021年1月25日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
深度学习(Deep Learning)发展史
Linux中国
7+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
24+阅读 · 2021年1月25日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员