The performance of computer vision models is susceptible to unexpected changes in input images when deployed in real scenarios. These changes are referred to as common corruptions. While they can hinder the applicability of computer vision models in real-world scenarios, they are not always considered as a testbed for model generalization and robustness. In this survey, we present a comprehensive and systematic overview of methods that improve corruption robustness of computer vision models. Unlike existing surveys that focus on adversarial attacks and label noise, we cover extensively the study of robustness to common corruptions that can occur when deploying computer vision models to work in practical applications. We describe different types of image corruption and provide the definition of corruption robustness. We then introduce relevant evaluation metrics and benchmark datasets. We categorize methods into four groups. We also cover indirect methods that show improvements in generalization and may improve corruption robustness as a byproduct. We report benchmark results collected from the literature and find that they are not evaluated in a unified manner, making it difficult to compare and analyze. We thus built a unified benchmark framework to obtain directly comparable results on benchmark datasets. Furthermore, we evaluate relevant backbone networks pre-trained on ImageNet using our framework, providing an overview of the base corruption robustness of existing models to help choose appropriate backbones for computer vision tasks. We identify that developing methods to handle a wide range of corruptions and efficiently learn with limited data and computational resources is crucial for future development. Additionally, we highlight the need for further investigation into the relationship among corruption robustness, OOD generalization, and shortcut learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月21日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员