This paper describes our approach to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our model is based on a state-of-the-art end-to-end coreference resolution system. Apart from joined multilingual training, we improved our results with mention head prediction. We also tried to integrate dependency information into our model. Our system ended up in $3^{rd}$ place. Moreover, we reached the best performance on two datasets out of 13.
翻译:本文描述了我们对CRAC 2022多语种协作解决共同任务的方法。 我们的模式基于最先进的端对端共同参考解析系统。 除了加入多语种培训外,我们还通过提及头预测改进了结果。 我们还试图将依赖信息纳入我们的模型。我们的系统最终以3美元为单位。 此外,我们在13个数据集的两个数据集上取得了最佳成绩。