Semantic segmentation models based on the conventional neural network can achieve remarkable performance in such tasks, while the dataset is crucial to the training model process. Significant progress in expanding datasets has been made in semi-supervised semantic segmentation recently. However, completing the pixel-level information remains challenging due to possible missing in a label. Inspired by Mask AutoEncoder, we present a simple yet effective Pixel-Level completion method, Label Mask AutoEncoder(L-MAE), that fully uses the existing information in the label to predict results. The proposed model adopts the fusion strategy that stacks the label and the corresponding image, namely Fuse Map. Moreover, since some of the image information is lost when masking the Fuse Map, direct reconstruction may lead to poor performance. Our proposed Image Patch Supplement algorithm can supplement the missing information, as the experiment shows, an average of 4.1% mIoU can be improved. The Pascal VOC2012 dataset (224 crop size, 20 classes) and the Cityscape dataset (448 crop size, 19 classes) are used in the comparative experiments. With the Mask Ratio setting to 50%, in terms of the prediction region, the proposed model achieves 91.0% and 86.4% of mIoU on Pascal VOC 2012 and Cityscape, respectively, outperforming other current supervised semantic segmentation models. Our code and models are available at https://github.com/jjrccop/Label-Mask-Auto-Encoder.
翻译:基于传统神经网络的语义分解模型可以在这些任务中取得显著的绩效,而数据集对于培训模型进程至关重要。在扩大数据集方面最近取得了显著进展,在半监督的语义分解中,最近已经取得了显著进展。然而,完成像素级信息仍然具有挑战性,因为标签中可能缺少。在Mask AutoEncoder的启发下,我们展示了一个简单而有效的像素级完成方法,即Label Mask AutoEncoder(L-MAE),该方法充分利用标签中的现有信息来预测结果。拟议模型采用了堆叠标签和相应图像(即Fuse Map)的聚合战略。此外,由于一些图像信息在遮盖Fuse地图时丢失了,直接重建可能导致不良的性能。我们提议的图像补比算法可以补充缺失的信息,如实验所示,4.1% mIOUU的平均数可以改进。 Procal-VOC-2012 数据模型(224clo,20类)和市域数据集(448个作物规模,19个类)在比较实验中分别使用了图像信息缩缩缩缩缩缩图, 和OI 的缩缩缩缩缩缩缩缩缩图,在比较实验中分别中,用于50的缩比值的缩比值的缩图。