Clinician-facing predictive models are increasingly present in the healthcare setting. Regardless of their success with respect to performance metrics, all models have uncertainty. We investigate how to visually communicate uncertainty in this setting in an actionable, trustworthy way. To this end, we conduct a qualitative study with cardiac critical care clinicians. Our results reveal that clinician trust may be impacted most not by the degree of uncertainty, but rather by how transparent the visualization of what the sources of uncertainty are. Our results show a clear connection between feature interpretability and clinical actionability.
翻译:临床直观的预测模型越来越多地出现在医疗保健环境中。 不论这些模型在性能衡量方面是否成功,所有模型都具有不确定性。 我们研究如何以可操作、可信赖的方式直观地传达这一环境中的不确定性。 为此,我们与心脏关键护理临床医生进行了定性研究。 我们的结果表明,临床信任可能受到的影响最大的不是不确定性的程度,而是不确定性来源的可视化的透明性。 我们的结果表明,特征可解释性和临床可操作性之间存在明确的联系。