Conventionally, piecewise polynomials have been used in the boundary elements method (BEM) to approximate unknown boundary values. Since infinitely smooth radial basis functions (RBFs) are more stable and accurate than the polynomials for high dimensional domains, the unknown values are approximated by the RBFs in this paper. Therefore, a new formulation of BEM, called radial BEM, is obtained. To calculate singular boundary integrals of the new method, we propose a new distribution for boundary source points that removes singularity from the integrals. Therefore, the boundary integrals are calculated precisely by the standard Gaussian quadrature rule (GQR) with n = 16 quadrature nodes. Several numerical examples are presented to check the efficiency of the radial BEM versus standard BEM and RBF collocation method for solving partial differential equations (PDEs). Analytical and numerical studies presented in this paper admit the radial BEM as a perfect version of BEM which will enrich the contribution of BEM and RBFs in solving PDEs, impressively.
翻译:暂无翻译