Navigation of mobile robots within crowded environments is an essential task in various use cases, such as delivery, health care, or logistics. Deep Reinforcement Learning (DRL) emerged as an alternative method to replace overly conservative approaches and promises more efficient and flexible navigation. However, Deep Reinforcement Learning is limited to local navigation due to its myopic nature. Previous research works proposed various ways to combine Deep Reinforcement Learning with conventional methods but a common problem is the complexity of highly dynamic environments due to the unpredictability of humans and other objects within the environment. In this paper, we propose a hierarchical waypoint generator, which considers moving obstacles and thus generates safer and more robust waypoints for Deep-Reinforcement-Learning-based local planners. Therefore, we utilize Delaunay Triangulation to encode obstacles and incorporate an extended hybrid A-Star approach to efficiently search for an optimal solution in the time-state space. We compared our waypoint generator against two baseline approaches and outperform them in terms of safety, efficiency, and robustness.
翻译:在拥挤环境中移动机器人的导航是各种使用案例(如交付、保健或后勤)中的一项基本任务。深强化学习(DRL)作为一种替代方法,取代过于保守的方法,并承诺以更高效、更灵活的导航。但是,深强化学习由于其短视性质而仅限于当地导航。以前的研究工作提出了将深强化学习与常规方法相结合的各种方法,但一个共同的问题是,由于人类和环境内其他物体的不可预测性,高度动态的环境十分复杂。在本文中,我们建议采用一个等级式路标生成器,考虑移动障碍,从而为深强化学习当地规划者创造更安全、更稳健的路径。因此,我们利用Delaunay三角定位系统来设置障碍,并纳入一个扩大的混合A-Star方法,以便在时态空间高效地寻找最佳解决方案。我们比较了我们的路点生成器与两个基线方法,并在安全、效率和稳健度方面超越了它们。