We present a randomized algorithm that computes single-source shortest paths (SSSP) in $O(m\log^8(n)\log W)$ time when edge weights are integral and can be negative. This essentially resolves the classic negative-weight SSSP problem. The previous bounds are $\tilde O((m+n^{1.5})\log W)$ [BLNPSSSW FOCS'20] and $m^{4/3+o(1)}\log W$ [AMV FOCS'20]. Near-linear time algorithms were known previously only for the special case of planar directed graphs [Fakcharoenphol and Rao FOCS'01]. In contrast to all recent developments that rely on sophisticated continuous optimization methods and dynamic algorithms, our algorithm is simple: it requires only a simple graph decomposition and elementary combinatorial tools. In fact, ours is the first combinatorial algorithm for negative-weight SSSP to break through the classic $\tilde O(m\sqrt{n}\log W)$ bound from over three decades ago [Gabow and Tarjan SICOMP'89].
翻译:我们提出了一个随机算法,以美元(m\log_8(n)\log W)计算单一来源最短路径(SSSP),计算时间为$O(m\log_8(n)\log W),当边缘重量是整体且可能是负的时段。这基本上解决了典型的负重量SSSP问题。以前的界限是$\tilde O((m+n ⁇ 1.5})\log W)$[BLNPSSSW FOCS'20]和$m%4/3+1 log W$[AMV FOCS'20]。近线性时间算法以前只知道用于平面定向图[Fakcharoenpol和Rao FOSFOS'01]的特殊情况。与最近所有依赖尖端连续优化方法和动态算法的发展相比,我们的算法很简单:它只需要简单的图形解析和初级组合工具。 事实上,我们的算法是负重量SSSP通过经典的 $\tilde O(m\qrt{n_n_wlog_W_30多年前(Gab) COM89 和 SIjan.