Digital recommender systems such as Spotify and Netflix affect not only consumer behavior but also producer incentives: producers seek to supply content that will be recommended by the system. But what content will be produced? In this paper, we investigate the supply-side equilibria in content recommender systems. We model users and content as $D$-dimensional vectors, and recommend the content that has the highest dot product with each user. The main features of our model are that the producer decision space is high-dimensional and the user base is heterogeneous. This gives rise to new qualitative phenomena at equilibrium: First, the formation of genres, where producers specialize to compete for subsets of users. Using a duality argument, we derive necessary and sufficient conditions for this specialization to occur. Second, we show that producers can achieve positive profit at equilibrium, which is typically impossible under perfect competition. We derive sufficient conditions for this to occur, and show it is closely connected to specialization of content. In both results, the interplay between the geometry of the users and the structure of producer costs influences the structure of the supply-side equilibria. At a conceptual level, our work serves as a starting point to investigate how recommender systems shape supply-side competition between producers.
翻译:点点和 Netflix 等数字推荐系统不仅影响消费者行为,也影响生产者激励机制: 生产者寻求提供系统建议的内容。 但是, 内容将产生什么内容? 在本文中, 我们调查内容推荐系统中的供方平衡性; 我们将用户和内容建模为D$- 维矢量, 并向每个用户推荐具有最高点产品的内容。 我们模型的主要特征是生产者决策空间是高度的, 用户基础是多种多样的。 这在平衡上产生了新的质量现象: 首先, 基因的形成, 生产者专门为用户子集进行竞争。 使用双重性论点, 我们为这种专业化创造必要和充分的条件。 第二, 我们显示生产者在平衡上可以实现积极的利益, 而在完美的竞争下, 通常是不可能的。 我们为此创造充分的条件, 并显示它与内容的专业化密切相关。 在这两种结果中, 用户的几何测量和生产者成本结构之间的相互作用, 影响着供应方平衡的结构。 在概念层面上, 我们的工作作为开始一个点, 研究供应方的形状。