This paper provides an empirical evaluation of recently developed exploration algorithms within the Arcade Learning Environment (ALE). We study the use of different reward bonuses that incentives exploration in reinforcement learning. We do so by fixing the learning algorithm used and focusing only on the impact of the different exploration bonuses in the agent's performance. We use Rainbow, the state-of-the-art algorithm for value-based agents, and focus on some of the bonuses proposed in the last few years. We consider the impact these algorithms have on performance within the popular game Montezuma's Revenge which has gathered a lot of interest from the exploration community, across the the set of seven games identified by Bellemare et al. (2016) as challenging for exploration, and easier games where exploration is not an issue. We find that, in our setting, recently developed bonuses do not provide significantly improved performance on Montezuma's Revenge or hard exploration games. We also find that existing bonus-based methods may negatively impact performance on games in which exploration is not an issue and may even perform worse than $\epsilon$-greedy exploration.


翻译:本文对最近在Arcade Learning 环境中开发的勘探算法进行了经验评估。 我们研究利用各种奖励奖金鼓励在强化学习中进行探索。 我们这样做的方法是,确定所使用的学习算法,并只侧重于代理人业绩中不同勘探奖金的影响。 我们使用彩虹,即基于价值的代理人最先进的算法,并侧重于过去几年中提出的一些奖金。 我们考虑到这些算法对蒙祖马的复仇游戏业绩的影响,该游戏吸引了勘探界的许多兴趣,涉及Bellemare等人(Bellemare等人(2016年)确定的对勘探有挑战的七场游戏,以及较容易的游戏。我们发现,在我们所处的环境中,最近开发的奖金并不能大大改善蒙特祖马的报复或硬性勘探游戏的绩效。 我们还发现,基于奖金的现有方法可能会对勘探不成问题的游戏的绩效产生负面影响,甚至可能比Greedy探索更差。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
9+阅读 · 2021年3月25日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
10+阅读 · 2021年11月10日
Arxiv
9+阅读 · 2021年3月25日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
A Multi-Objective Deep Reinforcement Learning Framework
Top
微信扫码咨询专知VIP会员