The scattering transform is a wavelet-based model of Convolutional Neural Networks originally introduced by S. Mallat. Mallat's analysis shows that this network has desirable stability and invariance guarantees and therefore helps explain the observation that the filters learned by early layers of a Convolutional Neural Network typically resemble wavelets. Our aim is to understand what sort of filters should be used in the later layers of the network. Towards this end, we propose a two-layer hybrid scattering transform. In our first layer, we convolve the input signal with a wavelet filter transform to promote sparsity, and, in the second layer, we convolve with a Gabor filter to leverage the sparsity created by the first layer. We show that these measurements characterize information about signals with isolated singularities. We also show that the Gabor measurements used in the second layer can be used to synthesize sparse signals such as those produced by the first layer.
翻译:分散式变换是S. Mallat 最初推出的以波盘为基础的波状神经网络模型。 Mallat 的分析表明, 这个网络具有理想的稳定性和惯性保障, 因此有助于解释这样的观察, 即从一个革命神经网络早期层学到的过滤器通常与波子相似。 我们的目的是了解网络后层应该使用哪种过滤器。 为此, 我们建议使用两层混合式变换。 在第一层, 我们用一个波盘过滤器转换输入信号, 以促其简单化, 在第二层, 我们和加博过滤器混在一起, 以利用第一个层创造的宽度。 我们显示这些测量数据是有关孤立的奇数信号的信息。 我们还表明, 第二层使用的加博测量数据可以用来合成像第一个层产生的微小信号。