The quantitative analysis of non-invasive electrophysiology signals from electroencephalography (EEG) and magnetoencephalography (MEG) boils down to the identification of temporal patterns such as evoked responses, transient bursts of neural oscillations but also blinks or heartbeats for data cleaning. Several works have shown that these patterns can be extracted efficiently in an unsupervised way, e.g., using Convolutional Dictionary Learning. This leads to an event-based description of the data. Given these events, a natural question is to estimate how their occurrences are modulated by certain cognitive tasks and experimental manipulations. To address it, we propose a point process approach. While point processes have been used in neuroscience in the past, in particular for single cell recordings (spike trains), techniques such as Convolutional Dictionary Learning make them amenable to human studies based on EEG/MEG signals. We develop a novel statistical point process model-called driven temporal point processes (DriPP)-where the intensity function of the point process model is linked to a set of point processes corresponding to stimulation events. We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model. Simulations reveal that model parameters can be identified from long enough signals. Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses-both evoked and induced-and isolates non-task specific temporal patterns.
翻译:对电子脑物理学和磁性脑物理学的非侵入性电子生理信号的定量分析,归结为对时间模式的识别,如调试反应、神经振荡的瞬态暴发,但也为数据清理闪烁或心跳。一些工作表明,这些模式可以在不受监督的情况下有效提取,例如,利用革命词典学习。这导致以事件为基础的数据描述。鉴于这些事件,一个自然的问题是估计其发生是如何通过某些认知任务和实验操纵来调节的。为了解决这个问题,我们建议了点处理方法。尽管过去在神经科学中,特别是在单细胞记录(运动列车)中,点过程,例如进化学学习等技术可以不受监督的方式有效地提取。我们开发了一个新型统计点进程模型,即所谓的驱动时间点进程(DriPP),其中点模型的强度功能与一组非点的认知任务和实验性时间模型进程挂钩。我们从激励性模型中得出一个快速的模型模型,该模型的模型和模型的模型的精确度值值反应与激励性结果的模型,我们从这个模型中得出了一个快速的模型,从而显示我们对结果的模型的模型的预测。