While Graph Neural Networks (GNNs) have demonstrated their efficacy in dealing with non-Euclidean structural data, they are difficult to be deployed in real applications due to the scalability constraint imposed by multi-hop data dependency. Existing methods attempt to address this scalability issue by training multi-layer perceptrons (MLPs) exclusively on node content features using labels derived from trained GNNs. Even though the performance of MLPs can be significantly improved, two issues prevent MLPs from outperforming GNNs and being used in practice: the ignorance of graph structural information and the sensitivity to node feature noises. In this paper, we propose to learn NOise-robust Structure-aware MLPs On Graphs (NOSMOG) to overcome the challenges. Specifically, we first complement node content with position features to help MLPs capture graph structural information. We then design a novel representational similarity distillation strategy to inject structural node similarities into MLPs. Finally, we introduce the adversarial feature augmentation to ensure stable learning against feature noises and further improve performance. Extensive experiments demonstrate that NOSMOG outperforms GNNs and the state-of-the-art method in both transductive and inductive settings across seven datasets, while maintaining a competitive inference efficiency.


翻译:虽然图形神经网络(GNNS)在处理非欧元结构数据方面显示了其效力,但由于多霍数据依赖性造成的可缩缩限制,很难在实际应用中应用这些数据。现有方法试图通过培训多层透视器(MLPs),专门使用来自经过培训的GNS的标签,在节点内容特征上培训多层透视器(MLPs),以解决这一可缩放问题。即使MLPs的性能可以大大改进,但有两个问题使MLPs无法超过GNS的性能,并在实践中加以使用:对图形结构信息的无知和对节点地物噪音的敏感性。在本文件中,我们提议学习如何通过对多层光学结构了解MLPs(NOS-robust) MLPs(NOS-ROBst-aware MLPs) 来克服挑战。具体地,我们首先用位置特性来补充节点内容,帮助MLPs获取图形结构信息。我们随后设计了一个新的代表性相似性蒸馏战略,将结构与MLPs的相似性结点与MLPs。最后,我们引入了对抗性特征增强功能,以确保在SMSMS-MLO-G-st-strog-trodudustral-d-tog-drodustrual 的系统上稳定地试验。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员