项目名称: 可磁分离的铁氧体/氮化碳/石墨烯异质结的原位构筑及可见光催化性能

项目编号: No.51472120

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 付永胜

作者单位: 南京理工大学

项目金额: 83万元

中文摘要: 半导体光催化技术作为一种绿色能源技术,在新能源和环境净化方面具有广阔的应用前景。本项目拟设计并原位构筑可磁分离的铁氧体/氮化碳/石墨烯异质结,研究其结构、载流子分离效应和可见光催化性能。在合成共价键键合的氮化碳/石墨烯体系的基础上,进一步采用溶剂热方法实现该体系与磁性铁氧体纳米颗粒(如MFe2O4, M=Co,Ni,Cu等)的原位复合,通过调变反应参数控制粒子的形貌、尺寸以及分散性,发挥各组分性能上的优势及所产生的协同效应,提高光催化材料的综合性能。项目将研究异质结的组成、微结构、负载量等因素对催化性能的影响规律,阐明构效关系;同时研究催化剂与不同有机分子的相互作用(包括吸附动力学和热力学),以及这些作用对催化性能的影响;在研究异质结循环使用的过程中,将探索其活性衰减和失效机理。项目的实施不仅具有理论意义,而且将有助于研发稳定性好、活性高、波长响应宽、易于回收使用的高性能光催化体系。

中文关键词: 光催化剂;光催化机理;功能材料;原位合成

英文摘要: Semiconductor photocatalysis, as a green technology, has attracted extraordinary interest for the extensively applied foreground in new energy and environment purification. This proposal is based on C3N4/graphene system to design a magnetically separable spinel ferrite/g-C3N4/graphene heteroarchitecture with high performance under visible light irradiation, as expected from the strengths of individual components and the concerted effects. The ferrite/g-C3N4/graphene heteroarchitecture will be prepared via soft chemistry method, using metal ( Fe, Co, Ni, Cu, etc.) salts as metal sources and the covalent functionalized graphene nanosheets with g-C3N4 as support material. The correlation between the photocatalytic activity and the microstructure as well as the composition and loading amounts will be greatly concerned. Attention will be also paid to the interaction of organic molecules with catalyst surfaces, including adsorption thermodynamics and dynamics. Moreover, the decay of photocatalytic activity and its failure mechanism will be investigated. Overall, this proposal is not only conducive to developing a high-performance photocatalyst with good stability, high activity, broader spectral response range and easy reusability, but also has theoretical significance in the area of catalytic materials.

英文关键词: Photocatalysts;Photocatalysis mechanism;Functional materials;In situ construction

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】多视图聚合的大规模三维语义分割
专知会员服务
20+阅读 · 2022年4月20日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
84+阅读 · 2021年8月11日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
28+阅读 · 2020年8月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2021年11月11日
小贴士
相关主题
相关VIP内容
【CVPR2022】多视图聚合的大规模三维语义分割
专知会员服务
20+阅读 · 2022年4月20日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
84+阅读 · 2021年8月11日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
微信扫码咨询专知VIP会员