In the emerging era of big data, larger available clinical datasets and computational advances have sparked a massive interest in machine learning-based approaches. The number of manuscripts related to machine learning or artificial intelligence has exponentially increased over the past years. As analytical machine learning tools become readily available for clinicians to use, the understanding of key concepts and the awareness of analytical pitfalls are increasingly required for clinicians, investigators, reviewers and editors, who even as experts in their clinical field, sometimes find themselves insufficiently equipped to evaluate machine learning methodologies. In the first section, we provide explanations on the general principles of machine learning, as well as analytical steps required for successful machine learning-based predictive modelling - which is the focus of this series. In further sections, we review the importance of resampling, overfitting and model generalizability as well as feature reduction and selection (Part II), strategies for model evaluation, reporting and discussion of common caveats and other points of significance (Part III), as well as offer a practical guide to classification (Part IV) and regression modelling (Part V), with a complete coding pipeline. Methodological rigor and clarity as well as understanding of the underlying reasoning of the internal workings of a machine learning approach are required, otherwise predictive applications despite being strong analytical tools are not well accepted into the clinical routine. Going forward, machine learning and artificial intelligence shape and influence modern medicine across disciplines including the field of neurosurgery.


翻译:在新的大数据时代,现有更多的临床数据集和计算进步引起了对机器学习方法的极大兴趣。过去几年,与机器学习或人工智能有关的手稿数量急剧增加。随着分析机器学习工具随时可供临床医生使用,对关键概念的理解和对分析陷阱的认识日益需要,临床医生、调查员、审核员和编辑甚至作为临床领域的专家,有时发现自己不具备评价机器学习方法的足够条件。在第一节,我们解释了机器学习的一般原则,以及成功的机器学习预测模型所需的分析步骤——这是本系列工作的重点。在进一步各节,我们审查重新抽取、超配和模型通用的重要性,以及减少和选择特征(第二部分),示范评价、报告和讨论共同洞穴和其他重要要点(第三部分)的战略,以及为分类(第四部分)和回归模型(第五部分)提供实用指南,并附有完整的编织管道。方法严谨和清晰明晰,作为以其他方式学习、超前期分析工具,正在深入地学习、深入地进行机前期分析,同时不断学习、深入地了解机前期的机理学方法。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
46+阅读 · 2019年10月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
24+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员