This paper presents an approach for learning motion planners that are accompanied with probabilistic guarantees of success on new environments that hold uniformly for any disturbance to the robot's dynamics within an admissible set. We achieve this by bringing together tools from generalization theory and robust control. First, we curate a library of motion primitives where the robustness of each primitive is characterized by an over-approximation of the forward reachable set, i.e., a "funnel". Then, we optimize probably approximately correct (PAC)-Bayes generalization bounds for training our planner to compose these primitives such that the entire funnels respect the problem specification. We demonstrate the ability of our approach to provide strong guarantees on two simulated examples: (i) navigation of an autonomous vehicle under external disturbances on a five-lane highway with multiple vehicles, and (ii) navigation of a drone across an obstacle field in the presence of wind disturbances.


翻译:本文为学习运动规划者提供了一种方法,在学习运动规划者的同时,还提供了在新环境中取得成功的概率保障,这些新环境在任何干扰机器人的动态时都统一存在一个可受理的一组。我们通过汇集一般化理论和强力控制的工具来实现这一点。首先,我们建立一个运动原始体图书馆,其中每个原始体的强力特征是过度接近前方可达标集,即“漏网 ” 。然后,我们可能优化了大致正确的(PAC)-Bayes一般化界限,以训练我们的规划者组成这些原始体,使整个漏斗都尊重问题规范。我们展示了我们的方法能够在两个模拟例子上提供强有力的保证:(一) 在多辆汽车的五线高速公路上,在外部动乱下驾驶一部自主车辆,以及(二) 在风扰动时驾驶无人驾驶无人驾驶无人驾驶飞机穿越障碍场。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员