Quantitative information flow (QIF) is concerned with assessing the leakage of information in computational systems. In QIF there are two main perspectives for the quantification of leakage. On one hand, the static perspective considers all possible runs of the system in the computation of information flow, and is usually employed when preemptively deciding whether or not to run the system. On the other hand, the dynamic perspective considers only a specific, concrete run of the system that has been realised, while ignoring all other runs. The dynamic perspective is relevant for, e.g., system monitors and trackers, especially when deciding whether to continue or to abort a particular run based on how much leakage has occurred up to a certain point. Although the static perspective of leakage is well-developed in the literature, the dynamic perspective still lacks the same level of theoretical maturity. In this paper we take steps towards bridging this gap with the following key contributions: (i) we provide a novel definition of dynamic leakage that decouples the adversary's belief about the secret value from a baseline distribution on secrets against which the success of the attack is measured; (ii) we demonstrate that our formalisation satisfies relevant information-theoretic axioms, including non-interference and relaxed versions of monotonicity and the data-processing inequality (DPI); (iii) we identify under what kind of analysis strong versions of the axioms of monotonicity and the DPI might not hold, and explain the implications of this (perhaps counter-intuitive) outcome; (iv) we show that our definition of dynamic leakage is compatible with the well-established static perspective; and (v) we exemplify the use of our definition on the formalisation of attacks against privacy-preserving data releases.


翻译:量化信息流(QIF)旨在评估计算系统中的信息泄漏。在QIF中,泄漏量化存在两个主要视角。一方面,静态视角在计算信息流时考虑系统的所有可能运行路径,通常用于预先决定是否运行系统。另一方面,动态视角仅考虑已实现的特定具体运行路径,而忽略所有其他路径。动态视角适用于系统监控器和追踪器等场景,特别是在根据截至某时刻已发生的泄漏量决定是否继续或中止特定运行时。尽管静态泄漏视角在文献中已较为成熟,但动态视角仍缺乏同等水平的理论完备性。本文通过以下关键贡献致力于弥合这一差距:(i)提出一种新颖的动态泄漏定义,将攻击者对秘密值的信念与衡量攻击成功率的秘密基线分布解耦;(ii)证明我们的形式化满足相关的信息论公理,包括非干涉性以及单调性和数据处理不等式(DPI)的松弛版本;(iii)指出在何种分析下强版本的单调性公理和DPI可能不成立,并解释这一(可能反直觉)结果的影响;(iv)论证我们的动态泄漏定义与成熟的静态视角具有兼容性;(v)通过隐私保护数据发布攻击的形式化实例展示我们定义的应用。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员