The trouble with data is that often it provides only an imperfect representation of the phenomenon of interest. When reading and interpreting data, personal knowledge about the data plays an important role. Data visualization, however, has neither a concept defining personal knowledge about datasets, nor the methods or tools to robustly integrate them into an analysis process, thus hampering analysts' ability to express their personal knowledge about datasets, and others to learn from such knowledge. In this work, we define such personal knowledge about datasets as data hunches and elevate this knowledge to another form of data that can be externalized, visualized, and used for collaboration. We establish the implications of data hunches and provide a design space for externalizing and communicating data hunches through visualization techniques. We envision such a design space will empower users to externalize their personal knowledge and support the ability to learn from others' data hunches.
翻译:数据问题在于它往往只提供不完全的感兴趣现象的描述。 当阅读和解释数据时, 个人对数据的知识就起着重要作用。 然而,数据可视化既没有界定个人对数据集的了解的概念,也没有将这些数据有力地纳入分析过程的方法或工具,从而妨碍分析员表达个人对数据集的了解的能力,以及其他人从这种知识中学习的能力。在这项工作中,我们把有关数据集的个人知识定义为数据预言,并将这种知识提升为另一种可以外部化、可视化和用于合作的数据形式。我们确定了数据预言的影响,并为通过可视化技术将数据预言外部化和传送数据预言提供了设计空间。我们设想这样的设计空间将使用户能够将其个人知识外部化,并支持从他人数据预言中学习的能力。