We present new models of optimization-based task and motion planning (TAMP) for robotic pick-and-place (P&P), which plan action sequences and motion trajectory with low computational costs. We improved an existing state-of-the-art TAMP model integrated with the collision avoidance, which is formulated as a mixed-integer linear programing (MILP) problem. To enable the MILP solver to search for solutions efficiently, we introduced two approaches leveraging features of collision avoidance in robotic P&P. The first approach reduces number of binary variables, which is related to the collision avoidance of delivery objects, by reformulating them as continuous variables with additional hard constraints. These hard constraints maintain consistency by conditionally propagating binary values, which is related to the carry action state and collision avoidance of robots, to the reformulated continuous variables. The second approach is more aware of the branch-and-bound method, which is the fundamental algorithm of modern MILP solvers. This approach guides the MILP solver to find integer solutions with shallower branching by adding a soft constraint, which softly restricts a robot's routes around delivery objects. We demonstrate the effectiveness of the proposed models with a modern MILP solver.


翻译:我们为机器人选取地点(P&P)提出了基于优化的任务和运动规划的新模型,这些模型以较低的计算成本规划行动序列和运动轨迹。我们改进了与避免碰撞问题相结合的现有先进TAMP模型,该模型是混合整数线性编程(MILP)问题。为使MILP求解器能够有效地寻找解决办法,我们引入了两种办法,在机器人P&P中利用避免碰撞的特征。第一种办法是减少二进制变量的数量,这与避免投送物体碰撞有关,办法是将其重新组合为具有额外硬性限制的连续变量。这些硬性制约因素通过有条件的传播双进制值保持一致性,即与机器人携带动作状态和避免碰撞有关的双进制值,与重新拟订的连续变量有关。第二种办法是更加了解分支和约束方法,这是现代MILP求解算器的基本算法。这种方法指导MILP求解器找到更浅的整式解决办法,方法是增加一个软质的分支,软性制约,软性地限制了机器人在交付物体周围的路径。我们展示了一种软式的机器人求效模型。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
58+阅读 · 2021年5月4日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
44+阅读 · 2020年4月10日
【斯坦福大学-论文】实体上下文关系路径的知识图谱补全
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
3+阅读 · 2021年6月9日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
Top
微信扫码咨询专知VIP会员