We derive novel algorithms for optimization problems constrained by partial differential equations describing multiscale particle dynamics, including non-local integral terms representing interactions between particles. In particular, we investigate problems where the control acts as an advection 'flow' vector or a source term of the partial differential equation, and the constraint is equipped with boundary conditions of Dirichlet or no-flux type. After deriving continuous first-order optimality conditions for such problems, we solve the resulting systems by developing a link with computational methods for statistical mechanics, deriving pseudospectral methods in both space and time variables, and utilizing variants of existing fixed point methods. Numerical experiments indicate the effectiveness of our approach for a range of problem set-ups, boundary conditions, as well as regularization and model parameters.
翻译:我们为受描述多尺度粒子动态的局部差异方程式限制的优化问题制定新的算法,包括代表粒子之间相互作用的非局部整体术语。特别是,我们调查控制作为对流“流动”矢量或部分差异方程的源值,而限制则配有分流或无流量类型的边界条件的问题。在为这类问题得出连续的第一阶最佳条件之后,我们通过发展与统计机械计算方法的联系、在空间和时间变量中产生假光谱方法,以及利用现有固定点方法的变异等来解决由此产生的系统。数字实验表明我们处理一系列问题设置、边界条件以及正规化和模型参数的方法的有效性。