We study polyiamonds (polygons arising from the triangular grid) that fold into the smallest yet unstudied platonic solid -- the octahedron. We show a number of results. Firstly, we characterize foldable polyiamonds containing a hole of positive area, namely each but one polyiamond is foldable. Secondly, we show that a convex polyiamond folds into the octahedron if and only if it contains one of five polyiamonds. We thirdly present a sharp size bound: While there exist unfoldable polyiamonds of size 14, every polyiamond of size at least 15 folds into the octahedron. This clearly implies that one can test in polynomial time whether a given polyiamond folds into the octahedron. Lastly, we show that for any assignment of positive integers to the faces, there exist a polyiamond that folds into the octahedron such that the number of triangles covering a face is equal to the assigned number.
翻译:我们研究的是折叠成最小但未经研究的圆柱形(圆柱形)的圆形(圆柱形),这些圆形折叠成最小的、但最小的、未经研究的圆形固体 -- -- 八面体。我们展示了一些结果。 首先,我们将含有一个正区洞的折叠圆形圆形圆形(即除一个多元圆形外各有一个)加以折叠。 其次,我们展示的是,圆锥形圆形圆圆形折叠到八面体(如果它含有五个多面体之一的话)才折叠到八面体圆形。 第三,我们展示了一个鲜明的尺寸:虽然有14号圆形的可展开的圆形圆形,但八面体内每个至少有15个圆形的圆形。这显然意味着,一个圆形圆柱形圆形圆形可以以多元时间测试某一个圆形是否折叠在八面上。 最后,我们显示,对于向脸部分配正整形的任何分配,有一个圆形圆形圆形圆形的圆形会折叠成八面的圆形,使一张面的三角形数与指定数相等。