Maximum composite likelihood estimation is a useful alternative to maximum likelihood estimation when data arise from data generating processes (DGPs) that do not admit tractable joint specification. We demonstrate that generic composite likelihoods consisting of marginal and conditional specifications permit the simple construction of composite likelihood ratio-like statistics from which finite-sample valid confidence sets and hypothesis tests can be constructed. These statistics are universal in the sense that they can be constructed from any estimator for the parameter of the underlying DGP. We demonstrate our methodology via a simulation study using a pair of conditionally specified bivariate models.
翻译:最大复合概率估计是当数据来自数据生成过程(DGPs)而数据并不采用可移植的联合规格时,最大综合概率估计的有用替代办法,我们证明,由边际和有条件规格构成的通用综合概率,可以简单构建综合概率比统计数据,据此可以构建有限和全面抽样的有效信任套件和假设测试。这些统计数据是普遍性的,因为可以通过对有条件规定的双轨模型进行模拟研究,从任何测算器中为DGP的参数建立这些数据。我们通过模拟研究展示我们的方法。