An $(m,n,a,b)$-tensor code consists of $m\times n$ matrices whose columns satisfy `$a$' parity checks and rows satisfy `$b$' parity checks (i.e., a tensor code is the tensor product of a column code and row code). Tensor codes are useful in distributed storage because a single erasure can be corrected quickly either by reading its row or column. Maximally Recoverable (MR) Tensor Codes, introduced by Gopalan et al., are tensor codes which can correct every erasure pattern that is information theoretically possible to correct. The main questions about MR Tensor Codes are characterizing which erasure patterns are correctable and obtaining explicit constructions over small fields. In this paper, we study the important special case when $a=1$, i.e., the columns satisfy a single parity check equation. We introduce the notion of higher order MDS codes (MDS$(\ell)$ codes) which is an interesting generalization of the well-known MDS codes, where $\ell$ captures the order of genericity of points in a low-dimensional space. We then prove that a tensor code with $a=1$ is MR iff the row code is an MDS$(m)$ code. We then show that MDS$(m)$ codes satisfy some weak duality. Using this characterization and duality, we prove that $(m,n,a=1,b)$-MR tensor codes require fields of size $q=\Omega_{m,b}(n^{\min\{b,m\}-1})$. Our lower bound also extends to the setting of $a>1$. We also give a deterministic polynomial time algorithm to check if a given erasure pattern is correctable by the MR tensor code (when $a=1$).
翻译:$( m, n, a, b) $- tensor 代码在分布式存储中有用, 因为单个删除可以通过读取行或列校校校校校校校校校校校校。 由 Gopalan 等人 推出的 最大可回收( MR) Tensor 代码是 Exmor 代码, 它可以纠正理论上可能纠正的信息的“ a 美元” 取消模式。 有关 MMS Tensor 代码的主要问题正在描述哪些删除模式可以校校正, 并在小域获得清晰的构造。 在本文中, 当 $=1, e. 列满足一个单一对等检查方程式时, 我们引入了更高的 MDS 代码( MDS $, liver) 代码( liver) codeal_ $( weega_ $, lix) coDRMIS codeal_ lax lax. $\ lax- modeal- codeal- m codeal codeal as a minal minal minal 1, modeal1, 然后, =x- modeal- li- m) a decude.