An $(m,n,a,b)$-tensor code consists of $m\times n$ matrices whose columns satisfy `$a$' parity checks and rows satisfy `$b$' parity checks (i.e., a tensor code is the tensor product of a column code and row code). Tensor codes are useful in distributed storage because a single erasure can be corrected quickly either by reading its row or column. Maximally Recoverable (MR) Tensor Codes, introduced by Gopalan et al., are tensor codes which can correct every erasure pattern that is information theoretically possible to correct. The main questions about MR Tensor Codes are characterizing which erasure patterns are correctable and obtaining explicit constructions over small fields. In this paper, we study the important special case when $a=1$, i.e., the columns satisfy a single parity check equation. We introduce the notion of higher order MDS codes (MDS$(\ell)$ codes) which is an interesting generalization of the well-known MDS codes, where $\ell$ captures the order of genericity of points in a low-dimensional space. We then prove that a tensor code with $a=1$ is MR iff the row code is an MDS$(m)$ code. We then show that MDS$(m)$ codes satisfy some weak duality. Using this characterization and duality, we prove that $(m,n,a=1,b)$-MR tensor codes require fields of size $q=\Omega_{m,b}(n^{\min\{b,m\}-1})$. Our lower bound also extends to the setting of $a>1$. We also give a deterministic polynomial time algorithm to check if a given erasure pattern is correctable by the MR tensor code (when $a=1$).


翻译:$( m, n, a, b) $- tensor 代码在分布式存储中有用, 因为单个删除可以通过读取行或列校校校校校校校校校校校校。 由 Gopalan 等人 推出的 最大可回收( MR) Tensor 代码是 Exmor 代码, 它可以纠正理论上可能纠正的信息的“ a 美元” 取消模式。 有关 MMS Tensor 代码的主要问题正在描述哪些删除模式可以校校正, 并在小域获得清晰的构造。 在本文中, 当 $=1, e. 列满足一个单一对等检查方程式时, 我们引入了更高的 MDS 代码( MDS $, liver) 代码( liver) codeal_ $( weega_ $, lix) coDRMIS codeal_ lax lax. $\ lax- modeal- codeal- m codeal codeal as a minal minal minal 1, modeal1, 然后, =x- modeal- li- m) a decude.

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月21日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员