We consider the problem of the Zinkevich (2003)-style dynamic regret minimization in online learning with exp-concave losses. We show that whenever improper learning is allowed, a Strongly Adaptive online learner achieves the dynamic regret of $\tilde O(d^{3.5}n^{1/3}C_n^{2/3} \vee d\log n)$ where $C_n$ is the total variation (a.k.a. path length) of the an arbitrary sequence of comparators that may not be known to the learner ahead of time. Achieving this rate was highly nontrivial even for squared losses in 1D where the best known upper bound was $O(\sqrt{nC_n} \vee \log n)$ (Yuan and Lamperski, 2019). Our new proof techniques make elegant use of the intricate structures of the primal and dual variables imposed by the KKT conditions and could be of independent interest. Finally, we apply our results to the classical statistical problem of locally adaptive non-parametric regression (Mammen, 1991; Donoho and Johnstone, 1998) and obtain a stronger and more flexible algorithm that do not require any statistical assumptions or any hyperparameter tuning.
翻译:我们考虑了Zinkevich (2003年) 式样的动态在网上学习中以解剖亏损的方式最大限度地减低遗憾的问题。我们表明,每当允许不适当的学习时,一个强大的适应性在线学习者就会获得美元(d ⁇ 3.5}n ⁇ 1/3}C_n ⁇ 2/3}\vee d\log n) 美元(美元)的动态遗憾,而美元(a.k.a.路径长度)是KKT条件所强加的原始和双重变量的复杂结构(a.k.a.路径长度)的总变异性(a.k.a.路径长度),而且可能具有独立的兴趣。最后,我们把结果运用于当地适应性非参数回归的典型统计问题(Mammen,1991年;Dono和Johnstalisco,1998年)中,最著名的最高界限是美元(Yuan和Lamperski,2019年)。我们的新证据技术优美地利用了KKT条件所强加的原始和双重变量的复杂结构。最后,我们运用了我们的结果,对当地适应性非参数回归的典型统计的典型统计问题(Mamenenen,1991年;Donho和Johnstaldroadal,没有要求任何更强大的和任何更强的统计模型。