In this era, big data applications including biomedical are becoming attractive as the data generation and storage is increased in the last years. The big data processing to extract knowledge becomes challenging since the data mining techniques are not adapted to the new requirements. In this study, we analyse the EEG signals for epileptic seizure detection in the big data scenario using Rotation Forest classifier. Specifically, MSPCA is used for denoising, WPD is used for feature extraction and Rotation Forest is used for classification in a MapReduce framework to correctly predict the epileptic seizure. This paper presents a MapReduce-based distributed ensemble algorithm for epileptic seizure prediction and trains a Rotation Forest on each dataset in parallel using a cluster of computers. The results of MapReduce based Rotation Forest show that the proposed framework reduces the training time significantly while accomplishing a high level of performance in classifications.
翻译:在这个时代,随着数据生成和储存在过去几年中增加,包括生物医学在内的大数据应用正在变得具有吸引力。由于数据开采技术没有适应新的要求,为获取知识而进行的大数据处理变得具有挑战性。在本研究中,我们分析了在使用旋转森林分类器进行大数据情景中癫痫癫痫检测的EEEG信号。具体地说,MSPCA被用于分流,WPD被用于特征提取和旋转森林,用于在地图菜单框架中进行分类,以正确预测癫痫的缉获量。本文展示了基于《地图图集》的分布式共通算法,用以预测癫痫的缉获量,并用一组计算机在平行的每个数据集上培训一个旋转森林。基于“地图图集”的旋转森林的结果表明,拟议的框架大大减少了培训时间,同时实现了高水平的分类业绩。