We describe a novel approach to decompose a single panorama of an empty indoor environment into four appearance components: specular, direct sunlight, diffuse and diffuse ambient without direct sunlight. Our system is weakly supervised by automatically generated semantic maps (with floor, wall, ceiling, lamp, window and door labels) that have shown success on perspective views and are trained for panoramas using transfer learning without any further annotations. A GAN-based approach supervised by coarse information obtained from the semantic map extracts specular reflection and direct sunlight regions on the floor and walls. These lighting effects are removed via a similar GAN-based approach and a semantic-aware inpainting step. The appearance decomposition enables multiple applications including sun direction estimation, virtual furniture insertion, floor material replacement, and sun direction change, providing an effective tool for virtual home staging. We demonstrate the effectiveness of our approach on a large and recently released dataset of panoramas of empty homes.
翻译:我们描述一种新颖的方法,将一个空室内环境的单一全景分解成四个外观组成部分:视觉、直接阳光、分散和无直接阳光的分散环境;我们的系统受到自动制作的语义图(包括地板、墙壁、天花板、灯、窗帘和门标签)的微弱监督,这些地图在视觉观点上取得了成功,并且通过转让学习而无需任何进一步说明就接受了全景培训; 一种基于GAN的方法,在语义图提取的镜面反射和地面和墙上的直接阳光区域获得的粗劣信息的监督下; 这些照明效应通过类似的GAN方法和语义认知的成像步骤被去除; 外观分解使多种应用得以应用,包括太阳方向估计、虚拟家具插入、地板材料替换和太阳方向变化,为虚拟家庭组合提供了有效工具; 我们展示了我们对于大量最近公布的空房全景数据集的有效方法。