Deep recommender systems (DRS) are critical for current commercial online service providers, which address the issue of information overload by recommending items that are tailored to the user's interests and preferences. They have unprecedented feature representations effectiveness and the capacity of modeling the non-linear relationships between users and items. Despite their advancements, DRS models, like other deep learning models, employ sophisticated neural network architectures and other vital components that are typically designed and tuned by human experts. This article will give a comprehensive summary of automated machine learning (AutoML) for developing DRS models. We first provide an overview of AutoML for DRS models and the related techniques. Then we discuss the state-of-the-art AutoML approaches that automate the feature selection, feature embeddings, feature interactions, and model training in DRS. We point out that the existing AutoML-based recommender systems are developing to a multi-component joint search with abstract search space and efficient search algorithm. Finally, we discuss appealing research directions and summarize the survey.
翻译:深度推荐系统(DRS)对于目前的商业在线服务提供商至关重要,这些系统通过推荐适合用户兴趣和喜好的项目来解决信息超载问题,具有前所未有的特征表现效力和模拟用户与项目之间非线性关系的能力。尽管它们取得了进步,但DRS模型与其他深层学习模型一样,采用复杂的神经网络结构和其他关键组成部分,这些结构通常由人类专家设计和调控。本文章将全面概述开发DRS模型的自动机器学习(Automle)情况。我们首先概述DRS模型和相关技术的自动ML(Automotal)及相关技术。然后我们讨论在DRS中将地物选择、地物嵌入、地物互动和模式培训自动化的最新自动解运方法。我们指出,现有的基于Automle的推荐系统正在发展成一个包含抽象搜索空间和高效搜索算法的多部分联合搜索。最后,我们讨论有吸引力的研究方向并总结调查。