For magnetic resonance imaging (MRI), recently proposed "plug-and-play" (PnP) image recovery algorithms have shown remarkable performance. These PnP algorithms are similar to traditional iterative algorithms like FISTA, ADMM, or primal-dual splitting (PDS), but differ in that the proximal update is replaced by a call to an application-specific image denoiser, such as BM3D or DnCNN. The fixed-points of PnP algorithms depend upon an algorithmic stepsize parameter, however, which must be tuned for optimal performance. In this work, we propose a fast and robust auto-tuning PnP-PDS algorithm that exploits knowledge of the measurement-noise variance that is available from a pre-scan in MRI. Experimental results show that our algorithm converges very close to genie-tuned performance, and does so significantly faster than existing autotuning approaches.


翻译:对于磁共振成像(MRI)来说,最近提出的“插件和播放”图像恢复算法(PnP)已经表现出惊人的性能。这些PnP算法类似于FISTA、ADMM、或原始双向分离(PDS)等传统迭代算法,但不同之处在于,最接近于更新的功能被呼唤到一个应用程序专用图像解密器,如BM3D或DNCNN。PnP算法的固定点取决于一个算法级级级化参数,而参数必须适应最佳性能。在这项工作中,我们提出了一个快速和强大的自动调控PnP-PDDS算法,该算法利用了MRI预扫描中可用的测量-噪音差异的知识。实验结果显示,我们的算法非常接近基因调和性能,而且比现有的自动调法要快得多。

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
87+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年1月19日
Arxiv
0+阅读 · 2021年1月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
87+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员