Labelled networks are an important class of data, naturally appearing in numerous applications in science and engineering. A typical inference goal is to determine how the vertex labels (or features) affect the network's structure. In this work, we introduce a new generative model, the feature-first block model (FFBM), that facilitates the use of rich queries on labelled networks. We develop a Bayesian framework and devise a two-level Markov chain Monte Carlo approach to efficiently sample from the relevant posterior distribution of the FFBM parameters. This allows us to infer if and how the observed vertex-features affect macro-structure. We apply the proposed methods to a variety of network data to extract the most important features along which the vertices are partitioned. The main advantages of the proposed approach are that the whole feature-space is used automatically and that features can be rank-ordered implicitly according to impact.
翻译:焊接网络是一个重要的数据类别,自然出现在许多科学和工程应用中。典型的推论目标是确定顶端标签(或特征)如何影响网络结构。在这项工作中,我们引入了一种新的基因模型,即地貌第一区块模型(FFBM),便于在标签网络上使用丰富的查询。我们开发了巴伊西亚框架,并设计了两级的Markov链Monte Carlo方法,以便有效地从FFBM参数的相关后方分布中取样。这使我们能够推断所观测到的顶端特征是否以及如何影响宏观结构。我们对各种网络数据应用了拟议方法,以提取脊椎被分割的最重要特征。拟议方法的主要优点是,整个特征空间被自动使用,而且特征可以根据撞击而隐含的顺序排列。