Instruction tuning enables pretrained language models to perform new tasks from inference-time natural language descriptions. These approaches rely on vast amounts of human supervision in the form of crowdsourced datasets or user interactions. In this work, we introduce Unnatural Instructions: a large dataset of creative and diverse instructions, collected with virtually no human labor. We collect 64,000 examples by prompting a language model with three seed examples of instructions and eliciting a fourth. This set is then expanded by prompting the model to rephrase each instruction, creating a total of approximately 240,000 examples of instructions, inputs, and outputs. Experiments show that despite containing a fair amount of noise, training on Unnatural Instructions rivals the effectiveness of training on open-source manually-curated datasets, surpassing the performance of models such as T0++ and Tk-Instruct across various benchmarks. These results demonstrate the potential of model-generated data as a cost-effective alternative to crowdsourcing for dataset expansion and diversification.
翻译:教学调整使预先培训的语言模型能够从推断时间自然语言描述中执行新的任务。 这些方法依靠大量的人以多方源数据集或用户互动的形式进行监督。 在这项工作中,我们引入了非自然指令:大量由创造性和多样性指令组成的数据集,收集时几乎没有人工劳动。我们收集了64 000个实例,方法是用三个指令种子示例来激发语言模型,并引出第四个。然后,通过促使模型对每项指令进行重新表述,从而扩展了这套模块,创造了总共约240 000个指令、投入和产出实例。实验表明,尽管含有相当数量的噪音,但关于非自然指令的培训与关于开放源人工生成数据集的培训的实效相对应,超过了T0++和Tk-Instruct等模型在各种基准方面的性能。这些结果表明,模型生成的数据有可能作为众包的扩大和多样化的成本效益替代方法,作为众包。