The exploration of large-scale unknown environments can benefit from the deployment of multiple robots for collaborative mapping. Each robot explores a section of the environment and communicates onboard pose estimates and maps to a central server to build an optimized global multi-robot map. Naturally, inconsistencies can arise between onboard and server estimates due to onboard odometry drift, failures, or degeneracies. The mapping server can correct and overcome such failure cases using computationally expensive operations such as inter-robot loop closure detection and multi-modal mapping. However, the individual robots do not benefit from the collaborative map if the mapping server provides no feedback. Although server updates from the multi-robot map can greatly alleviate the robotic mission strategically, most existing work lacks them, due to their associated computational and bandwidth-related costs. Motivated by this challenge, this paper proposes a novel collaborative mapping framework that enables global mapping consistency among robots and the mapping server. In particular, we propose graph spectral analysis, at different spatial scales, to detect structural differences between robot and server graphs, and to generate necessary constraints for the individual robot pose graphs. Our approach specifically finds the nodes that correspond to the drift's origin rather than the nodes where the error becomes too large. We thoroughly analyze and validate our proposed framework using several real-world multi-robot field deployments where we show improvements of the onboard system up to 90\% and can recover the onboard estimation from localization failures and even from the degeneracies within its estimation.
翻译:大型未知环境的探索可以受益于多个机器人用于合作绘图的部署。 每个机器人都可以探索一个环境区段, 并在机上向中央服务器传送提供估计数和地图, 以构建一个优化的全球多机器人地图。 自然, 机上和服务器的估计数之间可能会出现不一致, 原因是机上偏移、 故障或变异。 绘图服务器可以使用计算成本高昂的操作, 如机器人间循环闭路探测和多模式绘图, 纠正和克服此类故障案例。 然而, 如果绘图服务器不提供反馈, 单个机器人无法从协作地图中受益。 虽然多机器人地图提供的服务器更新可以在战略上大大缓解机器人飞行任务, 但大部分现有工作却缺乏这些更新, 原因是机上的相关计算和带宽成本。 受这一挑战驱动, 本文提出了一个新的协作绘图框架, 使机器人和绘图服务器之间全球绘图的一致性得以纠正和克服。 特别是, 我们提议以不同空间尺度进行图形光谱分析, 以检测机器人和服务器图表之间的结构差异, 并且甚至为个体机器人系统内部设置必要的限制, 从而绘制图表。 我们的方法具体地显示实际错误和多处, 。