Fast and reliable trajectory planning is a key requirement of autonomous vehicles. In this paper we introduce a novel technique for planning the route of an autonomous vehicle on a straight rural road using the Spin model checker. We show how we can combine Spins ability to identify paths violating temporal properties with sensor information from a 3D Unity simulation of an autonomous vehicle, to plan and perform consecutive overtaking manoeuvres on a traffic heavy road. This involves discretising the sensory information and combining multiple sequential Spin models with a Linear Time Temporal Logic specification to generate an error path. This path provides the autonomous vehicle with an action plan. The entire process takes place in close to realtime using no precomputed data and the action plan is specifically tailored for individual scenarios. Our experiments demonstrate that the simulated autonomous vehicle implementing our approach can drive on average at least 40km and overtake 214 vehicles before experiencing a collision, which is usually caused by inaccuracies in the sensory system. While the proposed system has some drawbacks, we believe that our novel approach demonstrates a potentially powerful future tool for efficient trajectory planning for autonomous vehicles.
翻译:快速和可靠的轨迹规划是自动车辆的关键要求。 在本文中, 我们使用 Spin 模型检查器, 引入了一种新颖的技术, 用于规划在直径农村公路上自主车辆的路线。 我们展示了如何将“ 旋转式” 识别侵犯时空特性路径的能力与3D Unity 自动车辆模拟的传感器信息结合起来, 在交通重路上连续进行超载操作。 这涉及到将感知信息分离, 以及将多顺序旋转模型与线性时时逻辑规范结合起来, 以产生错误路径。 这个路径为自主车辆提供了一个行动计划。 整个过程在接近实时的时候使用没有预先计算过的数据, 而行动计划是专门针对个别情况的。 我们的实验表明, 执行我们的方法的模拟自主车辆在经历碰撞之前,平均可以驱动至少40公里, 超过214辆车, 这通常是由传感器系统中的不准确性造成的。 虽然拟议的系统有一些缺点, 但我们认为, 我们的新办法展示了未来对自主车辆有效轨迹规划有潜在强大的工具。