Resource allocation under uncertainty is a classical problem in city-scale cyber-physical systems. Consider emergency response as an example; urban planners and first responders optimize the location of ambulances to minimize expected response times to incidents such as road accidents. Typically, such problems deal with sequential decision-making under uncertainty and can be modeled as Markov (or semi-Markov) decision processes. The goal of the decision-maker is to learn a mapping from states to actions that can maximize expected rewards. While online, offline, and decentralized approaches have been proposed to tackle such problems, scalability remains a challenge for real-world use-cases. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation. We use emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then use Monte-Carlo planning for solving the smaller problems and managing the interaction between them. Finally, we use data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.


翻译:在不确定情况下分配资源是城市规模的网络物理系统中一个典型的问题。将应急反应视为一个范例;城市规划者和第一反应者优化救护车的位置,以尽量减少对公路事故等事故的预期反应时间。一般情况下,这类问题涉及在不确定情况下的顺序决策,可以以Markov(或半Markov)决策程序为模范。决策者的目标是从国家到能够最大限度地获得预期收益的行动的地图绘制。虽然已经提议了在线、离线和分散的方法来解决这些问题,但可扩缩性仍然是现实世界使用案例的挑战。我们提出了一个将城市一级的CPS问题的结构用于资源分配的等级规划总体方法。我们用应急反应作为案例研究,并表明如何将大规模的资源分配问题分成较小的问题。我们随后利用蒙特卡洛规划来解决较小的问题,并管理它们之间的互动。最后,我们使用美国主要大都市地区纳什维尔的数据来验证我们的方法。我们的实验表明,拟议的方法比应急反应领域所采用的最先进的方法要差。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
76+阅读 · 2021年9月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
将门创投
5+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
76+阅读 · 2021年9月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
将门创投
5+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员