Although multiple COVID-19 vaccines have been available for several months now, vaccine hesitancy continues to be at high levels in the United States. In part, the issue has also become politicized, especially since the presidential election in November. Understanding vaccine hesitancy during this period in the context of social media, including Twitter, can provide valuable guidance both to computational social scientists and policy makers. Rather than studying a single Twitter corpus, this paper takes a novel view of the problem by comparatively studying two Twitter datasets collected between two different time periods (one before the election, and the other, a few months after) using the same, carefully controlled data collection and filtering methodology. Our results show that there was a significant shift in discussion from politics to COVID-19 vaccines from fall of 2020 to spring of 2021. By using clustering and machine learning-based methods in conjunction with sampling and qualitative analysis, we uncover several fine-grained reasons for vaccine hesitancy, some of which have become more (or less) important over time. Our results also underscore the intense polarization and politicization of this issue over the last year.


翻译:虽然现在已有数月多种COVID-19疫苗,但在美国,疫苗仍然处于高水平,部分问题也已经政治化,特别是自11月总统选举以来。在包括Twitter在内的社交媒体背景下了解疫苗的闲置性可以为计算社会科学家和决策者提供宝贵的指导。本文没有研究单一的Twitter内容,而是通过比较研究两个不同时期(选举前一个时期和选举后几个月)之间收集的两个Twitter数据集,使用同样的、经过仔细控制的数据收集和过滤方法,对这一问题有了新的认识。我们的结果显示,从2020年秋季到2021年春季,讨论出现了从政治到COVID-19疫苗的重大转变。通过使用集群和机器学习方法进行抽样和定性分析,我们发现了疫苗闲置性的若干细微原因,其中一些随着时间的推移变得更为重要(或更少 ) 。我们的结果还凸显了这一问题在去年的高度两极分化和政治化。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Dyadic Human Motion Prediction
Arxiv
0+阅读 · 2022年1月13日
Arxiv
49+阅读 · 2020年12月16日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员