An assessment of variance in ocean current signal and noise shared by in situ observations (drifters) and a large gridded analysis (GlobCurrent) is sought as a function of day of the year for 1993-2015 and across a broad spectrum of current speed. Regardless of the division of collocations, it is difficult to claim that any synoptic assessment can be based on independent observations. Instead, a measurement model that departs from ordinary linear regression by accommodating error correlation is proposed. The interpretation of independence is explored by applying Fuller's (1987) concept of equation and measurement error to a division of error into shared (correlated) and unshared (uncorrelated) components, respectively. The resulting division of variance in the new model favours noise. Ocean current shared (equation) error is of comparable magnitude to unshared (measurement) error and the latter is, for GlobCurrent and drifters respectively, comparable to ordinary and reverse linear regression. Although signal variance appears to be small, its utility as a measure of agreement between two variates is highlighted. Sparse collocations that sample a dense grid permit a first order autoregressive form of measurement model to be considered, including parameterizations of analysis-in situ error cross-correlation and analysis temporal error autocorrelation. The former (cross-correlation) is an equation error term that accommodates error shared by both GlobCurrent and drifters. The latter (autocorrelation) facilitates an identification and retrieval of all model parameters. Solutions are sought using a prescribed calibration between GlobCurrent and drifters (by variance matching). Because the true current variance of GlobCurrent and drifters is small, signal to noise ratio is near zero at best. This is particularly evident for moderate current speed and meridional current component.


翻译:对洋流信号差异和洋流信号差异和由现场观测(离心器)和大网格分析(GlobCurentrent)所共享的噪音差异进行评估是作为1993-2015年全年的一天函数,并贯穿当前速度的广泛范围。不管合用同一地点的不同,很难说任何综合评估都可以以独立观测为基础。相反,提出了一种测量模型,这种模型与普通线性回归不同,可以容纳错误相关关系,从而与普通线性回归相背离。探索了独立性的诠释方法,将Fuller的1987年方程和度度值校正值差概念分别应用于将误差分为共享(coral相关)和未共享(clobCoralCral)的值差因新模型而产生差异。对于当前正向电网的精确度差异,采用当前正值正值和后期的比值分析(Clobrentral-ralorral)的度误差与前位误差等。对于GlobCral-ral-loral-deal-deal-deal-deal disal disal dismal dismlation的测法是典型的明显和前制式的明显分析。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
3+阅读 · 2017年10月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员