Vector mean estimation is a central primitive in federated analytics. In vector mean estimation, each user $i \in [n]$ holds a real-valued vector $v_i\in [-1, 1]^d$, and a server wants to estimate the mean of all $n$ vectors. Not only so, we would like to protect each individual user's privacy. In this paper, we consider the $k$-sparse version of the vector mean estimation problem, that is, suppose that each user's vector has at most $k$ non-zero coordinates in its $d$-dimensional vector, and moreover, $k \ll d$. In practice, since the universe size $d$ can be very large (e.g., the space of all possible URLs), we would like the per-user communication to be succinct, i.e., independent of or (poly-)logarithmic in the universe size. In this paper, we are the first to show matching upper- and lower-bounds for the $k$-sparse vector mean estimation problem under local differential privacy. Specifically, we construct new mechanisms that achieve asymptotically optimal error as well as succinct communication, either under user-level-LDP or event-level-LDP. We implement our algorithms and evaluate them on synthetic as well as real-world datasets. Our experiments show that we can often achieve one or two orders of magnitude reduction in error in comparison with prior works under typical choices of parameters, while incurring insignificant communication cost.


翻译:矢量平均值估算是联盟分析中的核心原始值。 在矢量平均值估算中,每个用户$ $ $ $ $ $ $ $ $ $ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元, 服务器想要估算所有 美元 向量 的平均值 。 我们不仅希望保护每个用户的隐私。 在本文中, 我们考虑矢量的矢量平均估计问题, 也就是每个用户通信量的上下限值, 也就是在本地的 美元- 美元 美元 度 度 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Local Differential Privacy for Belief Functions
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月14日
Arxiv
9+阅读 · 2021年4月8日
VIP会员
相关VIP内容
专知会员服务
22+阅读 · 2021年4月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员