A sunflower with p petals consists of p sets whose pairwise intersections are identical. The goal of the sunflower problem is to find the smallest r=r(p,k) such that any family of r^k distinct k-element sets contains a sunflower with p petals. Building upon a breakthrough of Alweiss, Lovett, Wu and Zhang from 2019, Rao proved that r=O(p log(pk)) suffices; this bound was reproved by Tao in 2020. In this short note we record that r=O(p log k) suffices, by using a minor variant of the probabilistic part of these recent proofs.


翻译:带有花瓣的向日葵由p组组成, 其相近交叉点是相同的。 向日葵问题的目标是找到最小的 r=r( p, k), 这样任何 rk 不同的 k 元素组的家族都包含一个带有p spetal 的向日葵。 在Alweis、 Lovett、 Wu 和 Zhang 从2019年突破后, Rao 证明r=O( p log( pk) ) 已经足够; 2020年, Tao 重新确认了这一约束。 在这个简短的注释中,我们记录到r=O( p log k) 足够, 使用这些最近证据的概率部分的微小变量。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
5+阅读 · 2017年10月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月11日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月7日
Arxiv
0+阅读 · 2021年5月7日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
5+阅读 · 2017年10月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员