Let $G$ be a graph on $n$ nodes. In the stochastic population protocol model, a collection of $n$ indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first read each other's states, and then update their local states. A rich line of research has established tight upper and lower bounds on the complexity of fundamental tasks, such as majority and leader election, in this model, when $G$ is a clique. Specifically, in the clique, these tasks can be solved fast, i.e., in $n \operatorname{polylog} n$ pairwise interactions, with high probability, using at most $\operatorname{polylog} n$ states per node. In this work, we consider the more general setting where $G$ is an arbitrary graph, and present a technique for simulating protocols designed for fully-connected networks in any connected regular graph. Our main result is a simulation that is efficient on many interesting graph families: roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance of the graph. As a sample application, we show that, in any regular graph with conductance $\phi$, both leader election and exact majority can be solved in $\phi^{-2} \cdot n \operatorname{polylog} n$ pairwise interactions, with high probability, using at most $\phi^{-2} \cdot \operatorname{polylog} n$ states per node. This shows that there are fast and space-efficient population protocols for leader election and exact majority on graphs with good expansion properties. We believe our results will prove generally useful, as they allow efficient technology transfer between the well-mixed (clique) case, and the under-explored spatial setting.
翻译:$G$ 是 $n 节点上的图表 。 在 Stochacial 人口协议模型中, 收集了 $n 无法区分的、 资源有限的节点 。 在每次互动中, 两个随机选择的邻居首先相互阅读对方的状态, 然后更新本地状态 。 在这项工作中, 一个丰富的研究线在基本任务的复杂性上下设置了紧紧的界限, 例如多数和领导选举, 当$G 是一个圆点时 。 具体地说, 在 美元节点中, 这些任务可以快速解决, 也就是说, $n 无法区分的、 资源限制的节点点 。 在 $ 的双对齐点互动中, 使用最多 $ operatorname{polylogy} 来进行双对齐 。 在这项工作中, $G是任意的, 并展示一个用于完全连接的网络的技术 。 我们的主要结果是在许多有趣的图表组中进行模拟: 大致上, 模拟平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面,, 显示的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面。