We prove that, for an undirected graph with $n$ vertices and $m$ edges, each labeled with a linear function of a parameter $\lambda$, the number of different minimum spanning trees obtained as the parameter varies can be $\Omega(m\log n)$.
翻译:我们证明,对于一个带有n美元顶点和美元边缘的非方向图,每张标有参数$\lambda$线性函数的图,当参数变化时获得的不同最低横线树数可以是$\Omega(m\log n) 。