In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on higher-order networks. Drawing analogies from discrete and graph signal processing, we introduce the building blocks for processing data on simplicial complexes and hypergraphs, two common higher-order network abstractions that can incorporate polyadic relationships. We provide brief introductions to simplicial complexes and hypergraphs, with a special emphasis on the concepts needed for the processing of signals supported on these structures. Specifically, we discuss Fourier analysis, signal denoising, signal interpolation, node embeddings, and nonlinear processing through neural networks, using these two higher-order network models. In the context of simplicial complexes, we specifically focus on signal processing using the Hodge Laplacian matrix, a multi-relational operator that leverages the special structure of simplicial complexes and generalizes desirable properties of the Laplacian matrix in graph signal processing. For hypergraphs, we present both matrix and tensor representations, and discuss the trade-offs in adopting one or the other. We also highlight limitations and potential research avenues, both to inform practitioners and to motivate the contribution of new researchers to the area.


翻译:在这个教程中,我们提供对高阶网络信号处理这一新兴主题的教学处理。从离散和图形信号处理中提取类比,我们引入了处理简化综合体和高阶网络数据的两个共同高阶网络抽象体,这两个共同的高阶网络抽象体可以包含多元关系。我们简单介绍简化综合体和高阶网络,特别强调处理这些结构所支持信号所需的概念。具体地说,我们讨论Fourier分析、信号分解、信号内插、节嵌式和通过神经网络的非线性处理,使用这两个高阶网络模型。在简化综合体和高阶网络中,我们特别侧重于信号处理,使用Hodge Laplacian矩阵,一个多重关系操作者,利用简化综合综合综合体的特殊结构,在图形信号处理中概括拉帕拉帕西亚矩阵的可取性。关于高压分析,我们介绍矩阵和阵列图案,并讨论在采用一个或多个高阶网络模式时进行交易,我们特别侧重于使用信号处理,向研究人员提供潜在的研究途径和动力。

0
下载
关闭预览

相关内容

信号处理期刊采用了理论与实践的各个方面的信号处理。它以原始研究工作,教程和评论文章以及实际发展情况为特色。它旨在将知识和经验快速传播给从事信号处理研究,开发或实际应用的工程师和科学家。该期刊涵盖的主题领域包括:信号理论;随机过程; 检测和估计;光谱分析;过滤;信号处理系统;软件开发;图像处理; 模式识别; 光信号处理;数字信号处理; 多维信号处理;通信信号处理;生物医学信号处理;地球物理和天体信号处理;地球资源信号处理;声音和振动信号处理;数据处理; 遥感; 信号处理技术;雷达信号处理;声纳信号处理;工业应用;新的应用程序。 官网地址:http://dblp.uni-trier.de/db/journals/sigpro/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
专知会员服务
57+阅读 · 2021年1月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员