In this tutorial, we provide a didactic treatment of the emerging topic of signal processing on higher-order networks. Drawing analogies from discrete and graph signal processing, we introduce the building blocks for processing data on simplicial complexes and hypergraphs, two common higher-order network abstractions that can incorporate polyadic relationships. We provide brief introductions to simplicial complexes and hypergraphs, with a special emphasis on the concepts needed for the processing of signals supported on these structures. Specifically, we discuss Fourier analysis, signal denoising, signal interpolation, node embeddings, and nonlinear processing through neural networks, using these two higher-order network models. In the context of simplicial complexes, we specifically focus on signal processing using the Hodge Laplacian matrix, a multi-relational operator that leverages the special structure of simplicial complexes and generalizes desirable properties of the Laplacian matrix in graph signal processing. For hypergraphs, we present both matrix and tensor representations, and discuss the trade-offs in adopting one or the other. We also highlight limitations and potential research avenues, both to inform practitioners and to motivate the contribution of new researchers to the area.
翻译:在这个教程中,我们提供对高阶网络信号处理这一新兴主题的教学处理。从离散和图形信号处理中提取类比,我们引入了处理简化综合体和高阶网络数据的两个共同高阶网络抽象体,这两个共同的高阶网络抽象体可以包含多元关系。我们简单介绍简化综合体和高阶网络,特别强调处理这些结构所支持信号所需的概念。具体地说,我们讨论Fourier分析、信号分解、信号内插、节嵌式和通过神经网络的非线性处理,使用这两个高阶网络模型。在简化综合体和高阶网络中,我们特别侧重于信号处理,使用Hodge Laplacian矩阵,一个多重关系操作者,利用简化综合综合综合体的特殊结构,在图形信号处理中概括拉帕拉帕西亚矩阵的可取性。关于高压分析,我们介绍矩阵和阵列图案,并讨论在采用一个或多个高阶网络模式时进行交易,我们特别侧重于使用信号处理,向研究人员提供潜在的研究途径和动力。