Learning a new concept from one example is a superior function of human brain and it is drawing attention in the field of machine learning as one-shot learning task. In this paper, we propose the simplest method for this task with a nonparametric weight imprinting, named Direct ONE-shot learning (DONE). DONE adds new classes to a pretrained deep neural network (DNN) classifier with neither training optimization nor pretrained-DNN modification. DONE is inspired by Hebbian theory and directly uses the neural activity input of the final dense layer obtained from a data that belongs to the new additional class as the connectivity weight (synaptic strength) with a newly-provided-output neuron for the new class, by transforming all statistical properties of the neural activity into those of synaptic strength. DONE requires just one inference for learning a new concept and its procedure is simple, deterministic, not requiring parameter tuning and hyperparameters. The performance of DONE depends entirely on the pretrained DNN model used as a backbone model, and we confirmed that DONE with a well-trained backbone model performs a practical-level accuracy. DONE has some advantages including a DNN's practical use that is difficult to spend high cost for a training, an evaluation of existing DNN models, and the understanding of the brain. DONE might be telling us one-shot learning is an easy task that can be achieved by a simple principle not only for humans but also for current well-trained DNN models.


翻译:从一个实例中学习一个新概念是人类大脑的优越功能,它正在机器学习领域引起人们的注意,作为一次性学习任务。在本文中,我们提出了这一任务的最简单方法,即非参数重量印记,名为直接一光学习(DONE)。DONE在事先训练的深神经网络分类器中添加了新的课程,既未优化培训,也未预先训练DNN修改。DONE受Hebbian理论的启发,并直接使用从属于新类别的数据中获取的最后密集层神经活动投入,该数据属于新的类别,作为连接重量(合成强度),具有新类别中新提供的输出神经元,方法是将神经活动的所有统计属性转换成合成强度。DONE只需要一种推论来学习新概念,其程序简单、确定性,不需要参数调整和超度计。DONE的性能完全取决于作为主干模型的预先训练 DNNN模型,我们目前经过良好训练的骨架模型可能不易操作。DNNE的硬度模型也用于一个实际任务水平。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月20日
Arxiv
0+阅读 · 2022年7月19日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
0+阅读 · 2022年7月20日
Arxiv
0+阅读 · 2022年7月19日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员