This paper considers the problem of controlling a convoy of autonomous vehicles to be deployed on automated highways. The individual behavior of an autonomous vehicle as an intelligent self-interested decision-maker can be analyzed under a non-cooperative differential game model of the convoy. The receding horizon Nash equilibrium of the linear-quadratic differential game provides a distributed state-feedback control strategy for the convoy. This approach suffers a fundamental issue that neither the existence nor the uniqueness of a Nash equilibrium is guaranteed, so the convoy control. We present a relative dynamics based model of the convoy that carries all the features of the individual dynamics based game model. We show that the relative dynamics model guarantees the existence of the convoy control as well as the asymptotic stability of the closed-loop system. Simulations illustrate the effectiveness of the presented convoy control scheme.
翻译:本文探讨了控制自动高速公路上将部署的自治车辆车队的问题; 可以在车队不合作的差别游戏模式下分析自主车辆作为聪明自利决策者的个人行为; 线性赤道差别游戏的淡退地平线纳什平衡为车队提供了一个分布式国家反向控制战略; 这种方法存在一个根本问题,即纳什平衡的存在和独特性得不到保障,因此车队控制; 我们提出了一个基于相对动态的车队模式,具有以个体动态为基础的游戏模式的所有特点; 我们表明,相对动态模式保障了车队控制的存在以及封闭式游轮系统的稳定。 模拟说明了所提出的车队控制计划的有效性。