Changing environments poses a great challenge on the outdoor visual perception and scene understanding for robust long-term autonomous driving and mobile robots, where depth-auxiliary geometric information plays an essential role to the robustness under challenging scenes. Although monocular depth prediction has been well studied recently, there are few work focusing on the depth prediction across multiple environmental conditions, e.g. changing illumination and seasons, owing to the lack of such a real-world dataset and benchmark. In this work, a new cross-season monocular depth prediction dataset SeasonDepth (available on https://seasondepth.github.io) is derived from CMU Visual Localization dataset through structure from motion. To benchmark the depth estimation performance under different environments, we investigate representative and recent state-of-the-art open-source supervised, self-supervised and domain adaptation depth prediction methods from KITTI benchmark using several newly-formulated metrics. Through extensive experimental evaluation on the proposed dataset without fine-tuning, the influence of multiple environments on performance and robustness is analyzed both qualitatively and quantitatively, showing that the long-term monocular depth prediction is far from solved. We further give promising solutions especially with stereo geometry and multi-task sequential self-supervised training to enhance the robustness to changing environments.


翻译:尽管最近对单层深度预测进行了仔细研究,但是由于缺少这种真实世界数据集和基准,很少有工作侧重于在多种环境条件下进行深度预测,例如,由于缺少这种真实世界数据集和基准,因此在变化环境中的环境变化给户外视觉感知和对稳健的长期自主驱动和移动机器人的场景理解带来了巨大挑战。在这项工作中,从CMU视觉本地化数据集(见https://seasson explocation.github.io)中得出新的跨季节单层单层深度预测数据集(见https://seson develop.github.io),在挑战场景中,深度定位信息对稳健性发挥了至关重要的作用。为了对不同环境中的深度估计业绩进行基准评估,我们很少开展侧重于深度预测的工作,例如,由于缺少这种真实世界数据集和基准,不断变化的照明和领域适应深度预测方法。通过对拟议的数据集进行广泛的实验性评估,对多种环境的性能和坚固性进行了分析,从定性和定量分析显示长期单层深度预测是具有希望的,从不断进行自我测测测测的多层环境,从一个更。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员